Turgor regulation of sucrose transport in sugar beet taproot tissue.

نویسندگان

  • R E Wyse
  • E Zamski
  • A D Tomos
چکیده

Sink tissues that store osmotically active compounds must osmoregulate to prevent excessively high turgor. The ability to regulate turgor may be related to membrane transport of solutes and thus sink strength. To study this possibility, the kinetics of sugar uptake were determined in sugar beet (Beta vulgaris L.) taproot tissue discs over a range of cell turgors. Sucrose uptake followed biphasic kinetics with a high affinity saturating component below 20 millimolar and a low affinity linear component at higher concentrations. Glucose uptake exhibited only simple saturation type kinetics. The high affinity saturating component of sucrose and glucose uptake was inhibited by increasing cell turgor (decreasing external mannitol concentrations). The inhibition was evident as a decrease in V(max) but no effect on K(m). Sucrose uptake by tissue equilibrated in dilute buffer exhibited no saturating component. Ethylene glycol, a permeant osmoticum, had no effect on uptake kinetics, suggesting that the effect was due to changes in cell turgor and not due to decreased water potential per se. p-(Chloromercuri)benzene sulfonic acid (PCMBS) inhibited sucrose uptake at low but not high cell turgor. High cell turgor caused the tissue to become generally leaky to potassium, sucrose, amino acids, and reducing sugars. PCMBS had no effect on sucrose leakage, an indication that the turgor-induced leakage of sucrose was not via back flow through the carrier. The ability of the tissue to acidify the external media was turgor dependent with an optimum at 300 kilopascals. Acidification was sharply reduced at cell turgors above or below the optimum. The results suggest that the secondary transport of sucrose is reduced at high turgor as a result of inhibition of the plasma membrane ATPase. This inhibition of ATPase activity would explain the reduced V(max) and leakiness to low molecular weight solutes. Cell turgor is an important regulator of sucrose uptake in this tissue and thus may be an important determinant of sink strength in tissues that store sucrose.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Electrical evidence for turgor inhibition of proton extrusion in sugar beet taproot.

Sections of sugar beet (Beta vulgaris L.) taproot were incubated in various concentrations of mannitol. At 0.4, 0.6, and 0.8 molar, the membrane electrical potential difference (E(m)) averaged about -130 millivolts; at 0.2 molar, about -90 millivolts; and at 0 molar, between -60 and -80 millivolts. Additions of 10 millivolts acetate to the incubation solutions (all at pH 5) enhanced the membran...

متن کامل

Sucrose uptake and compartmentation in sugar beet taproot tissue.

Active sucrose uptake by discs of mature sugar beet (Beta vulgaris L. cv GW-D2 and USH-20) root tissue shows a biphasic dependence on external sucrose. At concentrations up to 20 millimolar sucrose, the active uptake mechanism appears to approach saturation, with an apparent K(m) of 3.6 millimolar. At higher external sucrose concentrations, a linear dependence becomes obvious indicating the pro...

متن کامل

Transcriptomic profiling of taproot growth and sucrose accumulation in sugar beet (Beta vulgaris L.) at different developmental stages

In sugar beet (Beta vulgaris L.), taproot weight and sucrose content are the important determinants of yield and quality. However, high yield and low sucrose content are two tightly bound agronomic traits. The advances in next-generation sequencing technology and the publication of sugar beet genome have provided a method for the study of molecular mechanism underlying the regulation of these t...

متن کامل

Metagenomic Analysis of the Bacterial Community Associated with the Taproot of Sugar Beet

We analyzed a metagenome of the bacterial community associated with the taproot of sugar beet (Beta vulgaris L.) in order to investigate the genes involved in plant growth-promoting traits (PGPTs), namely 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase, indole acetic acid (IAA), N2 fixation, phosphate solubilization, pyrroloquinoline quinone, siderophores, and plant disease suppression as...

متن کامل

Effect of modified carbon allocation on turgor, osmolality, sugar and potassium content, and membrane potential in the epidermis of transgenic potato (Solanum tuberosum L.) plants

individual plant cells. Such a correlation between turgor and membrane potential appears likely since ions, for The effects of modification in sugar concentrations on example, potassium or chloride, contribute both to the turgor pressure and membrane potential in epidermal generation of membrane polarity via their Nernst potenleaf cells of transgenic potato (Solanum tuberosum cv. tial and to th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant physiology

دوره 81 2  شماره 

صفحات  -

تاریخ انتشار 1986